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Abstract

Background: One primary goal of transcriptomic studies is identifying gene expression patterns correlating with disease
progression. This is usually achieved by considering transcripts that independently pass an arbitrary threshold (e.g. p,0.05).
In diseases involving severe perturbations of multiple molecular systems, such as Alzheimer’s disease (AD), this univariate
approach often results in a large list of seemingly unrelated transcripts. We utilised a powerful multivariate clustering
approach to identify clusters of RNA biomarkers strongly associated with markers of AD progression. We discuss the value of
considering pairs of transcripts which, in contrast to individual transcripts, helps avoid natural human transcriptome
variation that can overshadow disease-related changes.

Methodology/Principal Findings: We re-analysed a dataset of hippocampal transcript levels in nine controls and 22
patients with varying degrees of AD. A large-scale clustering approach determined groups of transcript probe sets that
correlate strongly with measures of AD progression, including both clinical and neuropathological measures and quantifiers
of the characteristic transcriptome shift from control to severe AD. This enabled identification of restricted groups of highly
correlated probe sets from an initial list of 1,372 previously published by our group. We repeated this analysis on an
expanded dataset that included all pair-wise combinations of the 1,372 probe sets. As clustering of this massive dataset is
unfeasible using standard computational tools, we adapted and re-implemented a clustering algorithm that uses external
memory algorithmic approach. This identified various pairs that strongly correlated with markers of AD progression and
highlighted important biological pathways potentially involved in AD pathogenesis.

Conclusions/Significance: Our analyses demonstrate that, although there exists a relatively large molecular signature of AD
progression, only a small number of transcripts recurrently cluster with different markers of AD progression. Furthermore,
considering the relationship between two transcripts can highlight important biological relationships that are missed when
considering either transcript in isolation.
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Introduction

Alzheimer’s disease (AD) is an irreversible brain disease that

begins with mild memory impairment but eventually progresses to

severe brain dysfunction and dementia. The prevalence of AD is

rising dramatically due to an increasingly ageing population [1].

Early diagnosis is challenging as it can be difficult to discriminate

the initial manifestations of the disease from cognitive decline that

occurs as a function of normal aging [2]. Intensive efforts are being

made to better understand AD and identify appropriate

treatments, however the molecular mechanisms underlying the

disease are still far from being understood.

In 2004, Blalock and colleagues [3] made an important

contribution towards finding a set of molecular biomarkers that

correlate with the progression of AD in one region of the brain.

Using microarray technology, they assessed RNA transcript levels

in post-mortem hippocampal tissue from 9 controls and 22

patients with varying degrees of AD severity. Participants were

categorized, based primarily on Mini-Mental State Examination

(MMSE) score [4], into one of four clinical groups: Control,

Incipient AD, Moderate AD or Severe AD (see Materials and

Methods for details of classification).

A total of 22,286 probe sets for protein coding RNA (i.e.

mRNA) and non-coding RNA (ncRNA) were used to interrogate

the transcriptome. After excluding probe sets with signals below

detection thresholds and probe sets targeting unidentified

transcripts (e.g. expressed sequence tags), Blalock and colleagues

assessed the Pearson’s correlation of each of the remaining 9,921

probe set values with MMSE score and neurofibrillary tangle

(NFT) count. This analysis revealed 3,413 genes that are

significantly correlated (at p,0.05) with MMSE score, NFT count

or both [3].
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In 2010, Gomez Ravetti and colleagues (including two authors

of this contribution) re-analyzed the publicly available dataset of

Blalock using a different method, uncovering a 1,372-probe set

signature that presents a remarkably high consensus with

established phenotypic markers of AD progression [5]. Instead

of just assessing correlations between gene expression and clinical

measures of AD (such as MMSE score or NFT count), they

employed an integrated approach based on combinatorial

optimization techniques [6,7] and Information Theory. Briefly,

divergence of the gene expression profile of each individual sample

from the average characteristic profile of the ‘‘Control’’ group was

computed using the Jensen-Shannon divergence [8]. Similarly, this

approach was used to compute the convergence of the gene

expression profile of each individual sample to the average

characteristic profile of the ‘‘Severe AD’’ group. This allowed the

authors to identify genes with expression levels that correlate with

the characteristic molecular progression from normal cognition to

severe AD. In the current report, we use these quantifiers (which

we will simply term as JSDcontrol and JSDsevere, respectively) as

measures of AD progression, in addition to three common

phenotypic markers (MMSE score, NFT count and Braak staging;

obtained from [3]). We will refer collectively to these measures of

AD progression as ‘progression markers’.

The main objective of this work is to identify a reduced set of pairs

of RNA transcripts that strongly cluster with markers of AD

progression. The analysis of these clusters will also help to identify

individual transcripts that recurrently appear in many pairs, and

may thus guide the selection of candidate molecules for further

research. Towards this end, we apply a large-scale graph-based

clustering approach to datasets derived from the 1,372-probe set

signature identified by Gomez Ravetti et al. [5] to identify

molecular features that correlate with the different ‘progression

markers’. These datasets include the original 1,372-probe set

signature, all pair-wise ratios that can be computed from the

1,372-probe set signature and an expanded dataset containing all

pair-wise differences, summations, ratios and products that can be

computed from the original signature (giving a total of 3,762,024

probe set combinations). We will refer to these probe set pairs as

‘metafeatures’ [9].

To cluster such a large number of metafeatures, we re-

implemented and enhanced the MSTkNN algorithm in [10] by

using the external memory (EM) approaches in [11,12,13].

External memory algorithms are known for their efficiency in

handling large-scale data sets [14,15,16] and the MSTkNN

algorithm is a graph based data clustering algorithm that has

successfully been applied in several applications including the

analysis of stock market time series [17], a gene expression dataset

[18], a prostate cancer trial dataset [19] and has been integrated

with a combinatorial optimization based graph visualization layout

[20]. Our previous work indicates that the MSTkNN algorithm

produces meaningful clusters (see [17,18,20]) and our proposed

modification to this algorithm is still capable of producing

reasonable clustering structure in terms of homogeneity and

separation (Table 1).

After clustering all the metafeatures together with the different

progression markers, we attempt to uncover pairs of probe sets

that jointly cluster with each progression marker. Additionally, we

identify some probe sets in these pairs that not only cluster with

different progression markers but also relate to genes that share

common biological pathways. We annotate these pairs of markers

with the most recent information available. We also look at the

expression of some of these markers in a different transcriptomic

study that involves several regions of the brain in search for

consensus among different studies.

Results

Results for each of the datasets are presented in the following

order: 1. composition of the clusters containing the aforemen-

tioned progression markers, 2. results of functional analyses carried

out using publicly available tools (iHop, Gather, GIM) and 3. a

bibliographic (Pubmed) characterization of certain highlighted

Table 1. Performance comparison of the EM MSTkNN with k-Means, SOM, CLICK and the original MSTkNN algorithms, in terms of
homogeneity and separation.

Data Methods/Algorithm Parameter Havg Savg #Clusters Time

AD Signature data set
(n = 1,372)

k-Means k = 5 0.179 0.121 5 ,0.5 min

k = 120 0.394 0.172 120 ,1 min

SOM 2X5 grid 0.185 0.183 6 ,0.5min

5X5 grid 0.217 0.142 14 ,1 min

CLICK – 0.606 0.245 5 ,1 min

MSTkNN – 0.780 0.369 226 ,0.5 min

EM MSTkNN
(this paper)

– 0.789 0.370 228 ,0.2 min

AD ratios data set
(n = 941,885)

k-Means, SOM,
CLICK, MSTkNN

– Not Available Not Available Not Available Not Available

EM MSTkNN
(this paper)

– 0.812 0.420 40,139 30 min

AD ratios- sums-diffs-prods
dataset
(n = 3,763,403)

EM MSTkNN
(this paper)

– 0.879 0.521 121,611 120 min

The implementations of the k-Means, SOM, CLICK algorithms are obtained from the Expander microarray data cluster tool in [124]. The homogeneity and separation are
computed using the definition in [124]. The AD ratio metafeatures data set is generated by taking pair-wise ratios between the features in 1,372-probe AD signatures [5]
and including MMSE score, NFT count, Braak staging, JSDcontrol and JSDsevere as five progression markers. The other data set contains four different types of metafeatures
(ratios, summations, differences and products) and the aforementioned progression markers.
doi:10.1371/journal.pone.0045535.t001
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probe sets. Probe sets are highlighted for several reasons, including

having a strong correlation with one or more progression markers

or appearing in a metafeature with a probe set for another gene

which has a potential role in AD or in other brain disease. The

clustering outcomes are given in File S1, File S2 and File S3.

Where a particular probe set has been highlighted and discussed in

our previous publication on this dataset [5], we refer the reader to

this paper rather than re-iterating discussion points in the present

report.

1,372-probe set signature (File S1)
First, we analysed the 1,372-probe set signature from [5] using

the proposed clustering algorithm and found a total of 228 clusters.

We then identified the clusters that contain the proposed

progression markers (Figure 1 and Table 2).

Cluster containing MMSE score. A total of 11 probe sets

clustered with MMSE score. Among the gene transcripts targeted by

these probe sets, TTN (Titin/Connectin) may have a role in AD

progression through its ability to form amyloid aggregates [21].

The genes ATP5C1, COX4I1, KLHL20, ITGB8 and C10orf76 were

Figure 1. Visualization of the clustering outcome of the 1372-probe set signature. The figure shows only the clusters that contain the
progression markers (hexagonal nodes). We note that the probe set for PTEN, whose product has been recently observed to localize with intracellular
NFTs [36], has values that correlate strongly with the Jensen-Shannon divergence of the severe profile (JSDsevere).
doi:10.1371/journal.pone.0045535.g001
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highlighted by the analysis in Gomez Ravetti et al. [5] and we

refer the reader to this paper for extensive discussion of these genes

in the context of AD. We identified several probe sets that

uniquely cluster with MMSE score and target transcripts for genes

not previously associated with AD. These included PTMS

(parathymosin), a chromatin remodelling protein essential for cell

cycle progression and proliferation of normal and malignant cells,

MKS1 (Meckel syndrome, type 1), mutations in which are

associated with a malformation of central nervous system known

as Meckel syndrome, and SPDEF and a probe set for C19orf50.

Cluster containing NFT count. Two probe sets clustered

with NFT count. These probe sets targeted transcripts for COX6B1

and MMP11, both of which were highlighted in Gomez Ravetti

et al. [5] and will not be discussed in detail here.

Cluster containing braak staging. Three probe sets

clustered with the Braak staging values. These probe sets targeted

transcripts for CASP9 (caspase 9), which was previously highlighted

by the analysis in Gomez Ravetti et al. [5], TNKS (tankyrase) and

CR1 (complement receptor 1), which is genetically associated with

the risk of AD [22,23,24,25,26,27,28,29,30] and entorhinal cortex

volume in young healthy adults [31] (see also [32]).

Clusters containing JSDcontrol and JSDsevere. Two probe

sets clustered with JSDcontrol - these related to the genes ALDOB

(aldolase B, fructose-bisphosphate) and MLLT4 (myeloid/lym-

phoid or mixed-lineage leukemia, translocated to, 4), which is

reportedly involved in the formation and remodelling of synapses

in hippocampus [33]. Three probe sets clustered with JSDsevere.

These related to the genes BTG3 (BTG family, member 3), which

is related to prognosis of neuropathic symptoms in paraneoplastic

neuropathy [34], TREX1 (three prime repair exonuclease 1),

mutations in which can cause a neurovascular disorder involving

progressive cognitive decline due to brain degeneration [35], and

PTEN (phosphatase and tensin homolog). Altered distribution of

PTEN has been reported in degenerating neurons in AD;

specifically, a delocalization from the nucleus to the cytoplasm

and accumulation in intracellular neurofibrillary tangles [36].

Comparing clustering outcomes with statistics-based

outcomes. An alternative method for selecting probe sets highly

correlated with progression markers is to simply perform

regression analysis and identify the probe sets with the highest

correlation coefficient or lowest p-value. In essence this is a

univariate approach, where the selection of a particular probe set

is independent of which other probe sets are selected. In contrast,

the MSTkNN-based clustering method used here is a multivariate

approach which considers the interrelationships of different probe

sets in its selection. As such, we would expect the MSTkNN-based

method to identify features of potential biological relevance that

are missed by univariate approaches.

To investigate the similarities and differences in outcomes of

multivariate and univariate approaches, we compared the probe

sets identified by our clustering method with those having the

highest, most significant correlations by regression analysis (see

Figure S1). For example, we compared the 11 probe sets clustered

with MMSE to the 11 probe sets most significantly correlated with

MMSE by regression analysis. While there were some similarities

in the probe sets identified, there were also important differences.

Notably, some genes of particular relevance to AD were selected

by the clustering method but not by filtering based on statistical

Table 2. Clustering outcomes for the 1372-probe set signature.

Progression Marker Gene Symbol. Probe Set ID Correlation Coefficient KEGG Pathway

MMSE ATP5C1. 213366_x_at 0.764201 ATP synthesis

COX4I1. 202698_x_at 0.590462 Oxidative phosphorylation

SPDEF. 214403_x_at 20.48268

MKS1. 218630_at 20.69599

PTMS. 218044_x_at 20.72683

TTN. 208195_at 20.73718 Calcium signaling pathway, Focal adhesion

C19orf50. 200076_s_at 20.80389

KLHL20. 204177_s_at 20.81714

C10orf76. 55662_at 20.82583

ITGB8. 205816_at 20.86993 ECM-receptor interaction, Focal adhesion

NM_024849. 220531_at 20.88067

NFT COX6B1. 201441_at 0.564201 Oxidative phosphorylation

MMP11. 203876_s_at 20.290462

Braak CR1. 206244_at 0.363241 Complement and coagulation cascades

CASP9. 210775_x_at 20.240432 Apoptosis, MAPK signaling pathway

TNKS. 216695_s_at 20.287898

JSDcontrol MLLT4. 208512_s_at 0.723242 Adherens junction, Tight junction

ALDOB. 217238_s_at 0.480468 Carbon fixation, Glycolysis

JSDsevere BTG3. 215425_at 0.464201 ATP synthesis

PTEN. 211711_s_at 0.250462 Phosphatidylinositol signaling system, Tight junction

TREX1. 34689_at 0.236458

For each progression marker, probe sets have been ordered according to their Spearman’s rank correlation with the progression marker. Gene symbols in boldface
indicate that they were previously discussed in [5] and gene symbols with underlined boldface represent the cases for which a putative relationship exists in the
published literature between the gene and AD.
doi:10.1371/journal.pone.0045535.t002
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significance. For example, clustering with Braak staging identified

a probe set targeting CR1 which, as mentioned above, is widely

proposed as a genetic risk factor for AD, however this probe set

was not identified by the statistical method.

941,885 Ratio Metafeatures Data Set (File S2)
Next, we conducted a cluster analysis using the proposed

external memory clustering algorithm on the 941,885 metafea-

tures generated by calculating the ratio of each pair of probe sets

from the 1,372-probe set signature [5]. There were a total of

40,139 clusters in the data set, from which we again identified the

clusters that contain the previously mentioned progression

markers.

Cluster containing MMSE score. A total of 32 ratio

metafeatures (containing 35 different probe sets) clustered with

MMSE score (Table 3). The cluster contained metafeatures

involving probe sets for five genes previously studied in the

Table 3. Ratio metafeatures clustered with MMSE score.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

PPIA.212661_x_at/C3orf60.209177_at 0.884365

PIGO.209998_at/CASK.211208_s_at 0.760958

PURA.213806_at/AJ225093.211835_at 0.673877

PRKCB1.209685_s_at/PTEN.222176_at 20.68675 Phosphatidylinositol signaling system

FOXO1.202724_s_at/ACACA.212186_at 20.78654 Insulin signaling pathway

CASK.211208_s_at/PTEN.222176_at 20.83565 Tight junction

RPL23A.203012_x_at/ATP5C1.213366_x_at 20.83758

CASK.211208_s_at/ATP5C1.213366_x_at 20.86355

ACACA.212186_at/LDHA.200650_s_at 20.87642 Propanoate metabolism

PRKAR2B.203680_at/ACACA.212186_at 20.88001 Insulin signaling pathway

COX6A1.200925_at/ATP5C1.213366_x_at 20.88233 Oxidative phosphorylation

RPL23A.203012_x_at/PPIA.211765_x_at 20.88328

ACTN1.208636_at/VCL.200930_s_at 20.88344 Focal adhesion

ITGB8.205816_at/TTN.208195_at 20.88642 Focal adhesion

ITGB8.205816_at/PTN.209466_x_at 20.88642 Focal adhesion

CPT2.204264_at/ATP5C1.213366_x_at 20.89851

TTN.208195_at/PRKCB1.209685_s_at 20.90065 Focal adhesion

SDC1.201287_s_at/DDX1.201241_at 20.90504

TTN.208195_at/NEFL.221805_at 20.91592

ZNF34.219801_at/FXYD6.217897_at 20.9181

AL359052.214927_at/ATP5C1.205711_x_at 20.9188

NUCKS1.217802_s_at/PPIA.212661_x_at 20.91944

TCF7L2.212761_at/ACTN1.208636_at 20.92353 Adherens junction

TTN.208195_at/VSNL1.203798_s_at 20.93006

CASK.211208_s_at/PTN.209466_x_at 20.9301

NM_024849.220531_at/MRPL16.217980_s_at 20.93682

AJ225093.211835_at/ATP5C1.205711_x_at 20.93986

C10orf76.55662_at/PPIA.212661_x_at 20.94211

ITGB8.205816_at/SDC1.201287_s_at 20.95719 ECM-receptor interaction

ITGB8.205816_at/PPIA.212661_x_at 20.95911

CASK.211208_s_at/PPIA.211765_x_at 20.95641

TUG1.222244_s_at/SCFD1.215548_s_at 20.95643

Metafeatures are ordered by Spearman’s rank correlation with MMSE score. Genes in boldface indicate that they were previously discussed in [5] and genes with
underlined boldface represent the cases for which the gene has been discussed in the context of AD in the published literature.
doi:10.1371/journal.pone.0045535.t003

Table 4. Ratio metafeatures clustered with NFT count.

Metafeature
(Gene Symbol.
Probe Set ID)

Correlation
Coefficient

ICA1.207949_s_at/RUNX2.216994_s_at 20.78797

TSPAN9.220968_s_at/NRG1.206343_s_at 20.87831

PTMS.218044_x_at/GRPEL1.212434_at 20.87839

ITGB8.205816_at/ABAT.209460_at 20.87857

Metafeatures are ordered by Spearman’s rank correlation with NFT count.
Genes in boldface indicate that they were previously discussed in [5] and genes
with underlined boldface represent the cases for which the gene has been
discussed in the context of AD in the published literature.
doi:10.1371/journal.pone.0045535.t004
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context of AD (TTN [37,38], PPIA [39,40,41], VSNL1

[42,43,44,45,46,47,48], NEFL [49,50,51] and FXYD6 [52]). We

also identified, in different clustered metafeatures, probe sets for 15

other genes (FOXO1, ACACA, CASK, PTEN, PTN, ATP5C1, LDHA,

PRKAR2B, CPT2, DDX1, ITGBL1, TCF7L2, C10orf76, the non-

coding RNA TUG1 and SCFD1) previously highlighted in the

analysis of Gomez Ravetti et al. [5]. Additionally, we found 12

metafeatures in which both of the probe sets comprising the

metafeature relate to genes in a common pathway (Table 3). These

gene pairs were PRKCB1/PTEN (phosphatidylinositol signaling

system), FOXO1/ACACA and PRKAR2B/ACACA (insulin signaling

pathway), ACACA/LDHA (propanoate metabolism), COX6A1/

ATP5C1 (oxidative phosphorylation), TCF7L2/ACTN1 (adherens

junction), CASK/PTEN (tight junction), C10orf76/PPIA (ECM-

receptor interaction), ACTN1/VCL, ITGB8/TTN, ITGB8/PTN

and TTN/PRKCB1 (focal adhesion).

Cluster containing NFT count. Four ratio metafeatures

(containing 8 different probe sets) clustered with NFT count

(Table 4). The probe sets comprising these metafeatures did not

target genes in common pathways but four of them targeted genes

previously highlighted in the analysis of Gomez Ravetti et al. [5]:

ICA1, COX6B1, ATP5C1 and ITGB8.

Cluster containing braak staging. A total of 27 ratio

metafeatures clustered with Braak staging values (Table 5). Three

of these were comprised of probe sets targeting genes that can be

mapped to common KEGG pathways: CR1/SERPINA5 (comple-

ment and coagulation cascades), MDH2/ACO2 (TCA cycle) and

ITGB5/TNXB (ECM-receptor interaction). Of the various probe

sets identified in this cluster, only one targets a gene previously

implicated in AD - CR1 (discussed above). Metafeatures in the

cluster also contained probe sets targeting six other genes

previously highlighted by the analysis of Gomez Ravetti et al.

[5]: PTN, PPT1, RIMS2, ASTN1, ITGB5 and PAX6. Many of the

metafeatures that showed a positive correlation with Braak staging

were dominated by a probe set for LRRC48 (leucine rich repeat

containing 48), a gene which is currently poorly characterized.

Cluster containing JSDcontrol. A total of 93 ratio metafea-

tures (containing a total of 94 different probe sets) clustered with

JSDcontrol (Table 6), see also File S2 for complete list). Three of these

metafeatures comprised probe sets targeting genes in common

KEGG metabolic pathways: LDHA/GOT2 (cysteine metabolism),

Table 5. Ratio metafeatures clustered with Braak staging.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

LRRC48.208140_s_at/SLC6A1.205152_at 0.885391

LRRC48.208140_s_at/CHRDL1.209763_at 0.875476

LRRC48.208140_s_at/PTN.209466_x_at 0.868268

LRRC48.208140_s_at/PTPN4.205171_at 0.853365

LRRC48.208140_s_at/CAST.212586_at 0.847157

LRRC48.208140_s_at/MAOA.212741_at 0.837757

LRRC48.208140_s_at/PPT1.200975_at 0.837151

C16orf57.218060_s_at/RIMS2.206137_at 0.832873

LRRC48.208140_s_at/ACO2.200793_s_at 0.830536

LRRC48.208140_s_at/TIMM23.218118_s_at 0.828653

LRRC48.208140_s_at/ASTN1.213197_at 0.815831

PTTG1IP.200677_at/RANBP9.202583_s_at 0.786333

CSF2RA.211286_x_at/BBS4.212745_s_at 0.775829

LRRC48.208140_s_at/GABBR1.203146_s_at 0.761019

LRRC48.208140_s_at/PRC1.218009_s_at 0.748013

TRA@.209671_x_at/NKX3-1.209706_at 0.673362

RHOQ.212122_at/TBCE.203715_at 0.668935

ITGB5.201125_s_at/IFNGR2.201642_at 0.591936

LRRC48.208140_s_at/SLC6A1.205152_at 20.46804

CR1.206244_at/SERPINA5.209443_at 20.66797 Complement and coagulation
cascades

AL520908.217833_at/LRRC48.208140_s_at 20.68605

MDH2.213333_at/ACO2.200793_s_at 20.76804 TCA cycle

PAX6.205646_s_at/LRRC48.208140_s_at 20.77464

SFN.33322_i_at/LRRC48.208140_s_at 20.78278

BMX.206464_at/RGS3.220300_at 20.82257

ITGB5.201125_s_at/TNXB.216333_x_at 20.86804 ECM-receptor interaction

C15orf39.204494_s_at/LRRC48.208140_s_at 20.89186

Metafeatures are ordered by Spearman’s rank correlation with Braak staging. Genes in boldface indicate that they were previously discussed in [5] and genes with
underlined boldface represent the cases for which the gene has been discussed in the context of AD in the published literature. Most of the positively correlated
metafeatures in this cluster are dominated by LRRC48 (See File S2 for details).
doi:10.1371/journal.pone.0045535.t005
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NDUFA10/ATP5C1 (oxidative phosphorylation) and ATP5C1/

ATP5H (ATP synthesis). The probe sets contained in the clustered

metafeatures targeted six genes that have previously been studied

in the context of AD: PPP2CA [53,54,55,56], SERPINI1

[57,58,59,60,61], OPA1 [62,63,64,65,66], PPIA and CSF1

[67,68,69,70,71,72]. Additionally, we identified probe sets target-

ing 27 other genes previously highlighted by the analysis of Gomez

Ravetti et al. [5]: NUFIP1, ATP6V1D, UQCRQ, DDX1, WASF1,

ATP5C1, COX4I1, SNRK, PPP3CA, LDB2, COX7AP2, LAMTOR2,

LDHA, PBX1, CAPRIN2, SLC25A6, SCFD1, DOPEY1, CSPG5,

TUBG2, NRXN1, CADPS2, CRYM, FZD5, MAPK1, CASP9, PTN

and ICA1. Most of the metafeatures in this cluster that showed a

positive correlation with the divergence from control to severe AD

were dominated by KLK3 (kallikrein 3), also known as prostate

specific antigen, a well-known blood biomarker of prostate cancer

[73]. To determine whether correlations involving KLK3 levels

were influenced by gender, we stratified our dataset by gender. We

performed the clustering again in both gender-specific datasets

and found that KLK3 was completely absent in the same cluster of

the dataset comprising only females. We therefore suggest that

Table 6. Ratio metafeatures clustered with JSDcontrol.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

KLK3.204582_s_at/MAST3.213045_at 0.852532

KLK3.204582_s_at/NUFIP1.205136_s_at 0.792759

KLK3.204582_s_at/ATP5H.210149_s_at 0.79046

KLK3.204582_s_at/AW242701.213411_at 0.781264

KLK3.204582_s_at/GOT2.200708_at 0.774367

KLK3.204582_s_at/KIAA1467.213234_at 0.769769

KLK3.204582_s_at/FMO5.205776_at 0.758274

KLK3.204582_s_at/MDH2.213333_at 0.758067

KLK3.204582_s_at/PPP2CA.208652_at 0.757663

KLK3.204582_s_at/ATP6V1D.208898_at 0.744079

MAPK1.208351_s_at/KLK3.204582_s_at 20.71785

LDHA.200650_s_at/GOT2.200708_at 20.72409 Cysteine metabolism

CASP9.210775_x_at/KLK3.204582_s_at 20.72609

DNAJA4.220395_at/KLK3.204582_s_at 20.74448

ICA1.207949_s_at/CSF1.211839_s_at 20.75766

MDH2.213333_at/GOT2.200708_at 20.77348

TRIM26.202702_at/KLK3.204582_s_at 20.84302

AKR1B1.201272_at/KLK3.204582_s_at 20.86002

NDUFA10.217860_at/ATP5C1.205711_x_at 20.86735 Oxidative phosphorylation

ATP5C1.205711_x_at/ATP5H.210149_s_at 20.87348 ATP synthesis

We have selected 20 metafeatures (10 most positively correlated and 10 most negatively correlated) clustered with JSDcontrol and ordered them by Spearman’s rank
correlation with JSDcontrol. Genes in boldface indicate that they were previously discussed in [5] and genes with underlined boldface represent the cases for which the
gene has been discussed in the context of AD in the published literature. Most of the positively correlated metafeatures in this cluster are dominated by KLK3 (kallikrein
3) (See File S2 for details).
doi:10.1371/journal.pone.0045535.t006

Table 7. Ratio metafeatures clustered with JSDsevere.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

MLLT4.208512_s_at/PTEN.211711_s_at 0.842239 Tight junction

CYP3A4.205998_x_at/PTEN.211711_s_at 0.777368

MLLT4.208512_s_at/CCDC6.204716_at 0.753547

PRKCB1.209685_s_at/ATP2B2.204685_s_at 20.2207 Calcium signaling pathway

CPNE3.202118_s_at/AL520908.217833_at 20.46933

TGFB2.209909_s_at/PPP2CA.208652_at 20.67022 TGF-beta signaling pathway

FCAR.211307_s_at/AF043586.216394_x_at 20.78256

CYP3A4.205998_x_a/CPT2.204264_at 20.87018 Fatty acid metabolism

N25732.204131_s_at/AF043586.216394_x_at 20.9031

Metafeatures are ordered by Spearman’s rank correlation with JSDsevere. Genes in boldface indicate that they were previously discussed in [5] and genes with underlined
boldface represent the cases for which the gene has been discussed in the context of AD in the published literature.
doi:10.1371/journal.pone.0045535.t007
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Table 8. Ratio-sum-difference-product metafeatures clustered with MMSE score.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

ICA1.207949_s_at-ITGB8.205816_at 0.940945

GABBR2.209990_s_at+PPIA.212661_x_at 0.9268

LTBP1.202728_s_at-ITGB8.205816_at 0.923973

RRAD.204803_s_at-ITGB8.205816_at 0.922066

CSPG5.39966_at*ATP5C1.213366_x_at 0.917444

ATP5C1.213366_x_at*FXYD6.217897_at 0.911438

MKL2.218259_at+PPIA.212661_x_at 0.909957

PPIA.212661_x_at+ATP2B2.204685_s_at 0.908852

ATP5C1.213366_x_at+KIAA1107.214098_at 0.903328

ICA1.207949_s_at-C10orf76.55662_at 0.902256

PPIA.212661_x_at+KCNQ2.205737_at 0.900168

PRKAR2B.203680_at*ACACA.212186_at 0.8986 Insulin signaling pathway

ATP5C1.205711_x_at*FXYD6.217897_at 0.898298

VCL.200930_s_at-C10orf76.55662_at 0.897422

PPIA.212661_x_at+ARF3.200734_s_at 0.895376

RIBC2.206526_at-ITGB8.205816_at 0.894556

CSPG5.39966_at+ATP5C1.213366_x_at 0.894256

AW851559.216056_at-ZBTB20.222357_at 0.893367

MYT1L.210016_at+PPIA.212661_x_at 0.893136

PPIA.212661_x_at+AW514267.214945_at 0.892278

RRAD.204803_s_at-KLHL20.204177_s_at 0.891174

PTEN.222176_at*TTN.208195_at 0.891049 Focal adhesion

ATP5C1.213366_x_at+FXYD6.217897_at 0.890893

AI708767.211978_x_at*FXYD6.217897_at 0.890212

ATP5C1.213366_x_at*ACACA.212186_at 0.888843

U82303.216702_x_at+NM_018601.220880_at 20.90422

U82303.216702_x_at+PTEN.211711_s_at 20.90498

ITGB8.205816_at*SDC1.201287_s_at 20.90504 ECM-receptor interaction

ZNF34.219801_at-NRG1.206343_s_at 20.90504

U82303.216702_x_at+SERTAD2.202656_s_at 20.90546

JPH2.220385_at+NM_024849.220531_at 20.90598

ZBTB20.222357_at-NRG1.206343_s_at 20.90613

U82303.216702_x_at+RBM19.205115_s_at 20.90613

PTMS.218044_x_at+NM_024849.220531_at 20.90683

U82303.216702_x_at+TPP1.214195_at 20.90775

KLHL20.204177_s_at+AL359052.214927_at 20.90825

ITGB8.205816_at+TTN.208195_at 20.90941 Focal adhesion

KLHL20.204177_s_at+UMOD.206716_at 20.90994

TSPAN9.220968_s_at-NRG1.206343_s_at 20.91157

C10orf76.55662_at+NM_018601.220880_at 20.91218

C10orf76.55662_at+OTUB2.219369_s_at 20.91235

ITGB8.205816_at+NM_014163.220695_at 20.91264

SDC1.201287_s_at+FLJ23172.217016_x_at 20.91266

PRKCB1.209685_s_at+ACTN1.208636_at 20.91327 Focal adhesion

BE138647.214314_s_at+AL049242.216101_at 20.91548

TTN.208195_at/NEFL.221805_at 20.91592

KLHL20.204177_s_at+C19orf50.200076_s_at 20.91666

ZNF34.219801_at/FXYD6.217897_at 20.9181
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further study of KLK3 in relation to AD should be done in male

patients only.

Cluster containing JSDsevere. Nine ratio metafeatures clus-

tered with JSDsevere (Table 7). For four of these metafeatures, both

probe sets comprising the metafeature targeted genes that can be

mapped to a common KEGG pathway. These metafeatures were

MLLT4/PTEN (tight junction), PRKCB1/ATP2B2 (calcium sig-

naling pathway), TGFB2/PPP2CA (TGF-b signaling pathway),

CYP3A4/CPT2 (fatty acid metabolism). Metafeatures in this cluster

contained probe sets for three genes previously investigated in the

context of AD (CYP3A4 [74,75,76], ATP2B2 [77,78] and PPP2CA)

and four other genes previously highlighted by the analysis of

Gomez Ravetti et al. [5] (PTEN, PRKCB1, FCAR and CPT2).

Estimation of False Discovery Rate
Investigating a very large data space, such as that occupied by

the many possible metafeatures, will inevitably lead to a number of

false positive findings. In order to estimate the false discovery rate

at different correlation coefficient thresholds, and therefore

demonstrate the validity of our approach in identifying more than

just random events, we performed a simple a Monte-Carlo

permutation test by randomly permuting the MMSE scores of the

17 samples and computing the correlation of each metafeatures

with the permuted MMSE labels. The results after 1,000

permutations reveal that, at all thresholds tested, there is clearly

a higher number of strongly correlated metafeatures among our

ratio metafeatures dataset than would be expected by chance

alone (see Figure S2, Figure S3, Figure S4 and Figure S5).

3,763,403 Ratio-sum-difference-product Metafeatures Data
Set (File S3)

We next applied our clustering algorithm to a data set of

3,763,403 metafeatures. This dataset was produced by calculating

all pair-wise differences, summations, ratios and products of the 1,372-

probes identified in Gomez Ravetti et al. [5].

The algorithm created a total of 121,611 clusters for the data

set. We identified one larger cluster containing all of the

progression markers. Due to the large number of metafeatures

in the cluster, we focused only on the metafeatures with the

strongest positive and negative correlations with each of the

progression markers. We refer to File S3 for the details of this

cluster.

Metafeatures correlating with MMSE Score. From the list

of 50 metafeatures most strongly correlated (25 positively and 25

negatively) with MMSE score, we identified five that involve probe

sets that target genes in common KEGG pathways (Table 8). This

list of metafeatures also involved probe sets targeting genes

previously investigated in the context of AD (PPIA, TTN, FXYD6,

VSNL1, SERPINI1(see above), PLCB1 [79,80,81], IL15 [82,83,84],

NRG1 [85,86,87], SERTAD2 [88]) and genes highlighted by the

analysis in Ravetti et al. [5] (ICA1, ITGB8, GABBR2, CSPG5,

ATP2B2, C10orf76, PRKAR2B, ACACA, MYT1L, KLHL20, PTEN,

LDHA, AFF1, TUG1, RBM19, CPT2, ZBTB20, ITGBL1). We refer

the reader to the paper of Gomez Ravetti et al. [5] for discussion

of these genes in the context of AD.

Metafeatures correlating with NFT count. From the list of

50 metafeatures most strongly correlated with NFT count, four

comprised probe sets targeting genes in common pathways

(Table 9). There were also probe sets targeting genes previously

investigated in the context of AD (PPIA, TTN, MCL1 [89], UPF1

[90], RGS4 [91,92,93,94]) and some other genes highlighted by the

analysis in Gomez Ravetti et al. [5] (GNA14, C10orf76, MMP11,

TCF7L2, COX6B1, PRKCI, ICA1).

Metafeatures correlating with braak staging. From the

list of 50 metafeatures most strongly correlated with Braak staging,

five comprised probe sets targeting genes in common pathways

(See Table 10). Only one gene previously proposed to be involved

in AD, CR1 (see above), was targeted by a probe set within the 50

metafeatures. Probe sets targeting some important genes high-

lighted by the analysis of Gomez Ravetti et al. [5] (COX4I1,

CASP9, ITGB1, RHOQ, DLGAP2, GSTA3, BCL2, COX6A1 and

ATP5C1) were also found in this set of metafeatures.

Metafeatures correlating with JSDcontrol. From the list of

50 metafeatures most strongly correlated with JSDcontrol, four

comprised probe sets targeting genes in common pathways

(Table 11). We also identified metafeatures comprising probe sets

targeting various genes highlighted in the analysis in Gomez

Ravetti et al. [5] (RBM19, KCNK5, AGTR1, TUBD1, GABRQ,

MMP11, ZNF669, TBXA2R, NUFIP1, LDHA, ICA1).

Metafeatures correlating with JSDsevere. From the list of

50 metafeatures most strongly correlated with JSDsevere, six

comprised probe sets targeting genes in common pathways

(Table 12). We also identified metafeatures comprising probe sets

targeting genes previously studied in the context of AD (VSNL1,

PPP2CA, CYP3A4 (see above)) and genes highlighted by the

analysis in Gomez Ravetti et al. [5] (PTEN, MAPK1, COX6A1,

GABRQ, FCAR, FZD5, PIP5K1C, SHANK2, CPT2).

Comparison of Metafeature Correlations and Single
Probe Set Correlations

The observation of particular probe sets recurring in multiple

clustered metafeatures raises the question of whether the clustering

of certain metafeatures is driven by a strong correlation between a

progression marker and only one of the two individual probe sets

comprising a metafeature. To investigate this possibility, we

separately assessed the correlation of the two probe sets comprising

a metafeature with the progression marker in question and

compared this to the correlation between the metafeature and the

progression marker.

Deeper analysis of the ‘‘ratio metafeatures’’ that clustered with

MMSE scores reveals a number of metafeatures where individual

Table 8. Cont.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

AL359052.214927_at/ATP5C1.205711_x_at 20.9188

KLHL20.204177_s_at+SDC1.201287_s_at 20.9188

We have selected 50 metafeatures (25 most positively correlated and 25 most negatively correlated) and ordered them by Spearman’s rank correlation with MMSE
score. Genes in boldface indicate that they were previously discussed in [5] and genes with underlined boldface represent the cases for which the gene has been
discussed in the context of AD in the published literature (see File S3 for details).
doi:10.1371/journal.pone.0045535.t008
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Table 9. Ratio-sum-difference-product metafeatures clustered with NFT count.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

CCDC121.220321_s_at+U62966.207560_at 0.939664

CGA.204637_at+PRL.205445_at 0.918887

AL049435.213817_at+U62966.207560_at 0.912476

AL049242.216101_at+U62966.207560_at 0.912476

RNF121.219021_at+GNA14.220108_at 0.910216

U62966.207560_at+WWP1.212637_s_at 0.90442

MED13L.212207_at+U62966.207560_at 0.897981

F9.207218_at+U62966.207560_at 0.897533

U62966.207560_at+C10orf76.55662_at 0.890537

U62966.207560_at+U66059.216597_at 0.884725

U62966.207560_at+OTUB2.219369_s_at 0.884725

MMP11.203877_at+PRL.205445_at 0.884093

U62966.207560_at+TEAD3.209454_s_at 0.880455

U62966.207560_at+SPAG1.210117_at 0.871197

TEAD1.214600_at+TOX3.216623_x_at 0.867647

TTN.208195_at/CAST.212586_at 0.867043 Focal adhesion

TTN.208195_at*LOC100131599.213222_at 0.866901

TTN.208195_at*AP3S1.202442_at 0.866901

CYP3A7.211843_x_at+PRL.205445_at 0.865975

U62966.207560_at+RNMT.202684_s_at 0.865512

TCF7L2.212761_at*GNA14.220108_at 0.864466

LOC286434.222196_at+U62966.207560_at 0.86248

LOC286434.222196_at+PRL.205445_at 0.861916

MCL1.214057_at+U62966.207560_at 0.861243

ITGB8.205816_at+CAST.212586_at 0.86034 Focal adhesion

EDC4.202496_at+COX6B1.201441_at 20.85128

CAST.212586_at+COX6B1.201441_at 20.8518

TMPRSS5.221032_s_at+COX6B1.201441_at 20.85275

SIRT3.221562_s_at+COX6B1.201441_at 20.8535

UPF1.211168_s_at+COX6B1.201441_at 20.85405

COX6B1.201441_at+ACCN1.206690_at 20.85484

COX6B1.201441_at+ACTN1.211160_x_at 20.85501

NUP98.203195_s_at+COX6B1.201441_at 20.85527

DET1.219641_at+COX6B1.201441_at 20.85622

ANKRD34C.216073_at+COX6B1.201441_at 20.85845

C20orf111.209020_at+COX6B1.201441_at 20.86017

PRKCI.213518_at-HBG2.213515_x_at 20.86253

CYP3A7.211843_x_at+CYP26B1.219825_at 20.86253 Fatty acid metabolism

COX6B1.201441_at+DBNDD1.222234_s_at 20.86441

UBE3B.213822_s_at+COX6B1.201441_at 20.86685

IRF2BP1.213771_at+COX6B1.201441_at 20.86907

COX6B1.201441_at+PCSK1.205825_at 20.87192

IRF2BP1.213771_at+NM_005758.206809_s_at 20.87336

B3GALT2.210121_at+COX6B1.201441_at 20.87405

SNCG.209877_at+COX6B1.201441_at 20.8754

COX6B1.201441_at/ATP5C1.213366_x_at 20.87976 Oxidative phosphorylation

COX6B1.201441_at+RGS4.204339_s_at 20.88473

ALDOB.217238_s_at-PRL.205445_at 20.89422
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probe sets (one or both) are not significantly correlated (p.0.05)

with MMSE (see Table S1). This suggests that the high correlation

of certain metafeatures does not simply reflect an additive effect of

its two component probe sets (see Figure S6) but instead is driven

by the dynamics of the interrelationship (possibly a biological

interaction) between the two transcripts that are targeted.

For specific examples we refer to Figure 2 where we

demonstrate an example scenario with the three probe sets

targeting TTN, CASK and TUG1 and the metafeatures TTN/

PKRCB1, CASK/PTEN and TUG1/SCFD1. In this example, the

metafeatures show a better correlation with MMSE score than the

relevant individual probe sets (Figure 2). In general, we found that

if both the probe sets in a metafeature target genes in a common

pathway, then the metafeature shows better correlation with the

progression marker than either of the two individual probe sets.

For example, TTN and PKRCB1 both appear in the ‘focal

adhesion’ KEGG pathway and CASK and PTEN in both appear in

‘tight junction’ pathway.

There were various instances in which the individual compo-

nents of highly correlated metafeatures did not map to a common

KEGG pathway. For example, a metafeature containing probe

sets for TUG1 and SCFD1 shows a better correlation with MMSE

score than either probe set individually. However it is not

surprising that these transcripts do not map to a common

pathway, as long ncRNAs such as TUG1 are relative newcomers

to functional annotation.

It should be noted, however, that a high proportion of the

metafeatures (.90%) showed comparatively better correlations

with the progression markers than the individual probe sets

comprising these metafeatures. While this is not a universal

phenomenon (see Figure S6 and Table S1 for examples, where

two probe sets that are highly correlated with a progression marker

combine to create a poorly correlated metafeature), in view of the

larger data space occupied by the metafeatures, it is logical that the

metafeature analysis may yield an increased proportion of

spurious, false positive results. This is supported by the observed

difference in the estimated false discovery rate of two datasets of

different sizes (see Table S2 and Table S3). In an attempt to avoid

such results, we subsequently focus on ‘robust’ findings – probe

sets that recurrently cluster with different markers of AD

progression.

Robust Markers of AD Progression
We next attempted to identify probe sets that appeared

recurrently in the metafeatures and also clustered with different

markers of AD progression. We depict this group of probe sets in a

5-way Venn diagram (Figure 3 and Figure 4). In these figures, a

null (Q) symbol means that even if an overlap is shown in the

figure, there is no common transcript. From the 941,885 ratio

metafeatures data set, we identified 11 probe sets that, as part of

metafeatures, clustered with more than one progression marker.

The genes targeted by these probe sets were PPIA, ATP5C1,

LDHA, DDX1, SCFD1, ITGB8, PTEN, PRKCB1, CPT2, ICA1 and

PTN. From the 3,763,403 ratios-sum-difference-product metafeatures

data set, there were 13 probe sets that, as part of metafeatures,

clustered with more than one progression marker. The genes

targeted by these probe sets were PPIA, TTN, C10orf76, ICA1,

MMP11, RBM19, LDHA, COX6A1, GABRQ, CPT2, PTEN, VSNL1

and ATP5C1. Notably, six genes were identified as clustering with

more than one progression marker in both metafeature datasets:

PPIA, ATP5C1, LDHA, PTEN, CPT2 and ICA1. We refer the

readers to the Table S4 and Table S5, for further details of

correlation of these markers to the phenotypes.

Validation of Robust Markers in an Alternative Dataset
In order to gain insights into whether the robust markers

highlighted above are restricted to the hippocampus or show

changes in other AD-affected brain regions, we utilized an

independent dataset contributed by Liang and colleagues

[95,96]. This dataset contains microarray data on gene expression

in neurons isolated from four different regions of control and AD

brain: entorhinal cortex (EC), hippocampus (HIP), middle

temporal gyrus (MTG) and posterior cingulate cortex (PC).

Molecular signatures of each different region were generated as

described in Materials and Methods. Several of the ‘robust’ probe

set markers highlighted by our current analysis of hippocampal

tissue were also selected in the molecular signatures of two or more

regional neuronal populations. For example, PPIA and ATP5C1

showed expression changes in neurons isolated from the MTG and

PC of AD brain relative to control brain, PTEN showed expression

changes in the HIP and PC and ICA1 showed expression changes

in the HIP, MTG and PC (Figure 5). In addition, Visinin-like 1

(VSNL1), highlighted in the analysis in Gomez Ravetti et al. [5] as

one of the best markers of AD progression and recently proposed

as one of the four best CSF biomarkers of early AD [97], showed

expression changes in neurons isolated from EC, MTG and PC

(Figure 5) and has been shown in an additional dataset to have

altered expression in various brain regions in AD [98].

Discussion

The present study has extended on our previous analysis in [5]

by (i) considering variables that represent the interrelationship

between two RNA transcripts (i.e. metafeatures) and (ii) applying a

novel and powerful graph-based clustering approach to identify a

reduced set of transcripts or transcript pairs that correlate strongly

with markers of AD progression. This clustering approach is

facilitated by the implementation of an external memory

algorithm on a graphical processing unit, which allows clustering

of massive datasets (in this case involving four million elements)

that is not feasible using standard computational methods.

Table 9. Cont.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

ICA1.207949_s_at+NPAL3.210267_at 20.89588

COX6B1.201441_at+SORBS2.204288_s_at 20.89721

We have selected 50 metafeatures (25 most positively correlated and 25 most negatively correlated) and ordered them by Spearman’s rank correlation with NFT count.
Genes in boldface indicate that they were previously discussed in [5] and genes with underlined boldface represent the cases for which the gene has been discussed in
the context of AD in the published literature (see File S3 for details).
doi:10.1371/journal.pone.0045535.t009
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Table 10. Ratio-sum-difference-product metafeatures clustered with Braak staging.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

ST3GAL4.203759_at+LRRC48.208140_s_at 0.913812

LRRC48.208140_s_at*ATP5E.217801_at 0.891149

LRRC48.208140_s_at*COX4I1.200086_s_at 0.891149

LRRC48.208140_s_at*DOCK4.205003_at 0.891149

LRRC48.208140_s_at/SLC6A1.205152_at 0.885391

PRDM2.216445_at-CASP9.210775_x_at 0.88091

IL12B.207901_at/TNFRSF9.207536_s_at 0.878755 Cytokine-cytokine receptor interaction

C1orf89.220963_s_at+LRRC48.208140_s_at 0.876133

COPZ2.219561_at-RANBP9.202583_s_at 0.87554

LRRC48.208140_s_at/CHRDL1.209763_at 0.875476

LRRC48.208140_s_at-ITGB1.216190_x_at 0.874692

AL110206.216465_at+LRRC48.208140_s_at 0.873511

AJ251844.216362_at+LRRC48.208140_s_at 0.873511

SLC47A1.219525_at+PTBP1.211270_x_at 0.871548

ZNF506.221626_at+LRRC48.208140_s_at 0.871417

ITGB1.216178_x_at+LRRC48.208140_s_at 0.870888

WWTR1.202133_at*TBC1D5.201813_s_at 0.870138

MRPS11.215919_s_at+LRRC48.208140_s_at 0.869579

GJC2.214302_x_at-CASP9.210775_x_at 0.868789

LRRC48.208140_s_at/PTN.209466_x_at 0.868268

LRRC48.208140_s_at-BCAP29.205084_at 0.867814

RHOQ.212122_at+COPZ2.219561_at 0.866957

LRRC48.208140_s_at-SLC1A4.209611_s_at 0.865434

DNAI2.220636_at+ZNF506.221626_at 0.864854

GJA5.214466_at+LRRC48.208140_s_at 0.864296

CR1.206244_at/SERPINA5.209443_at 20.66797 Complement and coagulation cascades

ITGB5.201125_s_at/TNXB.216333_x_at 20.86804 ECM-receptor interaction

CASP9.210775_x_at-PRDM12.220894_x_at 20.87283

CASP9.210775_x_at-NTRK3.217033_x_at 20.87297

CGGBP1.214050_at-LRRC48.208140_s_at 20.87301

CASP9.210775_x_at-RENBP.206617_s_at 20.87347

KIAA1659.215674_at-LRRC48.208140_s_at 20.87353

CASP9.210775_x_at-MEOX2.206202_at 20.87395

CASP9.210775_x_at-DLGAP2.216916_s_at 20.87605

CASP9.210775_x_at-AW408767.217608_at 20.87684

CASP9.210775_x_at-TRBV6-4.216578_at 20.87744

R71245.217654_at-LRRC48.208140_s_at 20.87744

LCE2B.207710_at-LRRC48.208140_s_at 20.8788

CASP9.210775_x_at-FETUB.214417_s_at 20.87924

CASP9.210775_x_at+GSTA3.222102_at 20.87933

CASP9.210775_x_at*BCL2.203685_at 20.8806 Apoptosis

CASP9.210775_x_at+C6orf106.217924_at 20.88245

ATP5C1.205711_x_at*COX6A1.200925_at 20.88297 Oxidative phosphorylation

FLJ22222.219254_at-LRRC48.208140_s_at 20.88461

CASP9.210775_x_at-X97875.217158_at 20.88671

CASP9.210775_x_at-ELF3.201510_at 20.88842

C15orf39.204494_s_at/LRRC48.208140_s_at 20.89186

CASP9.210775_x_at-LRRC48.208140_s_at 20.89462
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In addition to identifying transcripts and metafeatures that

correlate with established phenotypic markers of AD severity (i.e.

MMSE score, NFT count, Braak staging), we utilized two addition

quantifiers of AD progression, based on Jensen-Shannon diver-

gence, to identify transcripts and metafeatures that correlate with a

putative molecular trend from control to severe AD. It remains to

be seen whether these quantifiers provide a more accurate

assessment of AD severity, however there are several promising

attributes that suggest this is the case. Firstly, the Jensen-Shannon

divergence values are based on a set of 1,372 different transcript

markers, in contrast to the univariate markers of neuropathology

or cognitive function. Secondly, some of the changes observed at

the transcriptional level may underlie AD pathogenesis, whereas

phenotypic consequences are more likely to simply reflect the

molecular perturbations that drive disease pathogenesis. The

results presented here indicate that a number of probe sets that are

highly correlated with Jensen-Shannon divergence are also highly

correlated with more traditional phenotypic markers of AD

progression. Our previous studies using these quantifiers in the

context of AD [5] and cancer [99] have also yielded high

consensus with established markers of disease progression.

Together, these findings give us confidence that metrics based

on multivariate transcriptional changes can act as reliable markers

of disease stage.

The analyses reported here demonstrate that, although there

exists a relatively large molecular signature associated with AD

progression, a relatively small number of transcripts appear

recurrently in metafeatures clustered with the progression markers.

This allowed a focussed investigation of a reduced set of

biomarkers that have been previously studied in the context of

cognitive decline and AD. Furthermore, our approach also put

emphasis on a few novel markers that have not been discussed

previously in relation to AD progression and warrant further

investigation.

While it is outside the scope of this paper to discuss in detail all

of the genes identified in the analyses, focussed discussion of some

of the most robust findings is warranted. As mentioned at the end

of the Results, as set of six genes (PPIA, ATP5C1, LDHA, PTEN,

ICA1, CPT2) recurrently appeared in metafeatures and clustered

with more than one progression marker in both metafeature

datasets. Furthermore, changes in expression of several of these

genes were validated in an alternative microarray dataset of

neurons from different AD-affected brain regions, lending further

support to the proposal that altered expression of these genes may

be involved in AD pathogenesis.

Peptidylprolyl isomerase A (PPIA), also known as cyclophilin

A, is believed to accelerate protein folding. Evidence from neural

cell lines suggests PPIA can protect against Ab-induced oxidative

stress, possibly by acting as a ROS scavenger [100]. Proteomics

studies have revealed decreased expression of PPIA in brains of

patients with non-Alzheimer’s disease tauopathies [41], suggest-

ing alterations in PPIA may be associated with the general

process of neurodegeneration rather than AD specifically.

Curiously, PPIA has been proposed as a suitable reference gene

for PCR studies of AD brain due to its stable expression

[101,102]. The results of our analysis strongly argue against this

and instead indicate that PPIA expression, particularly when

considered as part of a metafeature, is strongly correlated with

AD progression.

ATP synthase subunit gamma (ATP5C1) encodes a subunit of

mitochondrial ATP synthase, important for catalyzing ATP

synthesis in oxidative phosphorylation. While this gene has not

previously been implicated in AD, its transcriptional correlation

with AD progression may reflect disturbances in energy produc-

tion as a result of cellular loss.

Lactate dehydrogenase A (LDHA), another metabolic gene, is

responsible for catalysing the conversion of lactate to pyruvate, the

final step in anaerobic glycolysis. A recent study has demonstrated

that increased LDHA activity is a feature of nerve cell lines that

are resistant to Ab-induced cell death and that the phenomenon of

aerobic glycolysis might contribute to the mechanisms by which

certain neurons in the AD brain survive apoptosis [103].

Phosphatase and tensin homolog (PTEN) has generally been

studied in the context of cancer, as it is a tumor suppressor with

phosphatase activity that negatively regulates the AKT/PKB

signalling pathway. However PTEN has also been shown to be

necessary for proper migration of neurons and glia [104]. There

is decreased expression and altered distribution of PTEN in AD

brain [105,106], where it localizes with neuritic pathology such

as neurofibrillary tangles in damaged neurons [36]. PTEN

affects phosphorylation and aggregation of tau [106,107] and

appears to be regulated by presenilin, as presenilin deficient

neurons show a substantial reduction in PTEN [108]. Further-

more, mutations in the PTEN induced putative kinase 1

(PINK1) gene have been linked to early-onset familial

Parkinson’s disease [109,110], while ablation of PTEN in

dopaminergic neurons is neuroprotective in mouse models of

Parkinson’s disease [111].

Islet cell autoantigen 1 (ICA1) is believed to be an autoantigen

in insulin-dependent diabetes mellitus. ICA1 is the major binding

partner of PICK1 and together these proteins regulate trafficking

of AMPA glutamate receptors to the synapse [112]. It has also

been proposed that ICA1 participates in the process of neuroen-

docrine secretion through association with certain secretory

vesicles [113].

Carnitine palmitoyltransferase 2 (CPT2) is involved in the

oxidation of long-chain fatty acids in the mitochondria. This gene

has not previously been associated with AD.

In addition, we highlight some relevant genes that correlated

with more than one progression marker in one of the metafeature

Table 10. Cont.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

CASP9.210775_x_at+DENND4A.214787_at 20.89462

CASP9.210775_x_at-RGS3.220300_at 20.90202

We have selected 50 metafeatures (25 most positively correlated and 25 most negatively correlated) and ordered them by Spearman’s rank correlation with Braak
staging. Genes in boldface indicate that they were previously discussed in [5] and genes with underlined boldface represent the cases for which the gene has been
discussed in the context of AD in the published literature (see File S3 for details).
doi:10.1371/journal.pone.0045535.t010
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Table 11. Ratio-sum-difference-product metafeatures clustered with JSDcontrol.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

RBM19.205115_s_at-KCNK5.219615_s_at 0.886487

KLK3.204582_s_at-LOC645961.215320_at 0.875436

N25732.204131_s_at-MAST3.213045_at 0.85816

KLK3.204582_s_at-KYNU.210662_at 0.856764

RBM19.205115_s_at-AGTR1.208016_s_at 0.856409

ZNF669.220215_at-GEMIN6.219539_at 0.853995

KLK3.204582_s_at-BG482805.214777_at 0.853527

KLK3.204582_s_at/MAST3.213045_at 0.852532

TUBD1.210389_x_at-ESR1.205225_at 0.852098

CASP4.213596_at-LOC90379.221851_at 0.848467

KLK3.204582_s_at-MLLT4.208512_s_at 0.846819

GABRQ.220886_at+RBMS1.203748_x_at 0.844336

MMP11.203876_s_at-SCGB1D2.206799_at 0.838775

CASP4.213596_at-AF043586.216394_x_at 0.835322

RBM19.205115_s_at-AF043586.216394_x_at 0.834155

TMBIM1.217730_at*RBM4.200997_at 0.833134

AL080106.216121_at-BTN2A2.205298_s_at 0.833121

ZNF669.220215_at-TBXA2R.207554_x_at 0.832963

ZNF669.220215_at-LOC90379.221851_at 0.832263

SLC11A1.217507_at-SCGB1D2.206799_at 0.83103

KLK3.204582_s_at-CSH2.208342_x_at 0.824365

CENPE.205046_at-KYNU.210662_at 0.823506

ZNF669.220215_at-SCGB1D2.206799_at 0.823429

TUBD1.210389_x_at-IGSF6.206420_at 0.819997

U62966.207560_at-NUFIP1.205136_s_at 0.817348

MTHFD1.202309_at/MDH2.213333_at 20.67409 Glyoxylate and dicarboxylate metabolism

LDHA.200650_s_at/GOT2.200708_at 20.72409 Cysteine metabolism

IRF2BP1.213771_at-AU155105.214782_at 20.81881

LUZP4.220665_at-ZNF669.220215_at 20.81961

TXNDC9.203008_x_at+MAST3.213045_at 20.82019

SMAD3.205398_s_at-MLLT4.208512_s_at 20.82047 Adherens junction

ALDOB.217238_s_at+PDE4D.211840_s_at 20.82091

BF691447.221484_at*UBP1.218082_s_at 20.82124

BF691447.221484_at*RNMT.202683_s_at 20.82124

SLC9A3R2.215735_s_at-PSME3.209853_s_at 20.82473

LOC90379.221851_at-U66059.216597_at 20.82552

TREX1.34689_at-MARCH3.213256_at 20.82615

AW408767.217608_at-MMP11.203876_s_at 20.82763

PURA.213806_at-CENPE.205046_at 20.8307

C20orf111.209020_at-PSME3.209853_s_at 20.83454

FLJ39739.217136_at-CASP4.213596_at 20.83709

ALDOB.217238_s_at-TNFSF14.207907_at 20.84013

DIABLO.219350_s_at+MAST3.213045_at 20.84039

ALDOB.217238_s_at-CASP4.213596_at 20.84169

ICA1.207949_s_at+GCNT3.219508_at 20.84188

S80491.216974_at-MMP11.203876_s_at 20.84634

ALDOB.217238_s_at+SMAD3.205398_s_at 20.8545

AKR1B1.201272_at/KLK3.204582_s_at 20.86002
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datasets. Protein kinase C beta, encoded by PRKCB1, is involved

in a wide range of signalling pathways. Increased expression of

protein kinase C beta has been observed in membrane fractions of

aged Tg2576 mice, a model of AD [114]. Furthermore, one of the

best biomarkers in [5], visinin-like 1 (VSNL1), is only expressed in

neurons and shows decreasing expression as AD progresses. Levels

of VSNL1 in the CSF have recently been proposed as an effective

biomarker of early AD [97].

It is interesting to remark that the individual markers identified

in this study are bringing new insights to the pathological

mechanisms involved in AD but that an integrative approach is

required to understand them. For example, increased VSNL1 in

the CSF observed in [97] may be a consequence of increasing

neuronal death rather than an marker of early AD. On the other

hand, as LDHA expression is currently being considered as a

possible marker of aerobic glycolysis in Ab-resistant neurons [103],

the correlation between LDHA expression and AD progression

makes sense if we think that Ab-resistant neurons will be

proportionally more abundant in samples with greater disease

severity.

One limitation of the present study is that the low number of

samples (17) available for these analyses may have resulted in a

large number of highly correlated probe sets or metafeatures that

are false positives (see Figure S2, Figure S3, Figure S4, Figure S5,

for a validation of our correlations). The selection of just a few

features out of this large data space has been a critical task that we

attempted to solve by focusing on those which appear most

recurrently. Unfortunately, there are strong possibilities that even

with a set of random data and a very large search space, a set of

false positive markers may recurrently appear. However, since a

relatively higher number of published AD studies can already be

found that implicate these markers, we feel comfortable in making

the claim that they warrant further investigation in future AD

research.

The results presented here support the hypothesis that

systematically considering relationships between two or more

features (‘‘metafeatures’’) can improve biomarker discovery,

particularly when explored within a multivariate framework.

While univariate approaches may still provide important and

complementary insights to those obtained using multivariate

methods, we believe that utilizing both approaches in conjunction

is likely to produce the most robust and relevant findings.

Computational advances such as the external memory implemen-

tation of our clustering algorithm will hopefully make investiga-

tions of this type more commonplace, and we are currently

working towards more sophisticated parallel applications that

would enable the study even of larger datasets across a range of

diseases.

Materials and Methods

Datasets
This analysis draws on the data set contributed by Blalock et al.

[3] which can be accessed from the NCBI Gene Expression

Omnibus under the accession number GSE1297. The Blalock

study used Affymetrix HG-U133A microarrays to generate data

on 22,286 probe sets. From this dataset, we focused our analysis on

the 1,372-probe set signature identified by Gomez Ravetti et al.

[5].

The Blalock study assessed gene expression in hippocampal

tissue samples from 31 participants. Participants were categorized

into one of four clinical groups using the MMSE criterion:

‘‘Control’’ (MMSE .25, n = 9),‘‘Incipient AD’’ (MMSE 20–26,

n = 7), ‘‘Moderate AD’’ (MMSE 14–19, n = 8) or ‘‘Severe AD’’

(MMSE ,14, n = 7). Borderline cases (e.g. MMSE = 26) were

resolved using NFT count and Braak staging data [115].

In the present study, instead of using all 31 samples, we

excluded 14 samples that had gene expression profiles similar to

the representative profile of the ‘‘Control’’ group (n = 7) or similar

to the representative profile of the ‘‘Severe AD’’ group (n = 7). The

17 remaining samples correspond to the central 17 columns of the

supplementary material ‘File S2 (sheet:1372-probe)’ of [5] and the

data set containing the signature of Gomez Ravetti et al. [5] for

these 17 samples is termed 1,372-probe set signature throughout the

paper. Our rationale for excluding these 14 samples is two-fold.

Firstly, little information about disease progression is likely to be

gained by considering participants at either extreme of a disease

spectrum. Control participants will not have developed any

molecular characteristics of early AD and participants with severe

AD may have already progressed to the disease endpoint.

Secondly, as the ‘‘Control’’ and ‘‘Severe AD’’ groups were used

to generate the 1,372-probe set signature, inclusion of these

samples would likely influence correlations in a biased way. By

excluding these samples, we can assess correlation with AD

progression in a truly independent ‘test’ set of samples.

The advantages of using pair-wise relational features (i.e.

metafeatures) have recently been demonstrated by Rocha de

Paula et al. [116] in the context of plasma protein biomarkers for

the early detection of AD. We therefore expanded the 1,372-probe

set signature by applying different operators between each possible

pair of probe sets. This led to the creation of two ‘‘artificial’’ data

sets:

N The first data set includes all the pair-wise ratios of the gene

expression values in 1,372-probe set data. It contains a total of

941,885 probe sets, metafeatures and progression markers. We

refer to this data set as the 941,885 ratio metafeatures data set.

N The second data set includes all the pair-wise differences,

summations, ratios and products of the gene expression values in

Table 11. Cont.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

KCNJ5.208397_x_at-CASP4.213596_at 20.86111

NDUFA10.217860_at/ATP5C1.205711_x_at 20.86735 Oxidative phosphorylation

We have selected 50 metafeatures (25 most positively correlated and 25 most negatively correlated) and ordered them by Spearman’s rank correlation with JSDcontrol.
Genes in boldface indicate that they were previously discussed in [5] and genes with underlined boldface represent the cases for which the gene has been discussed in
the context of AD in the published literature (see File S3 for details).
doi:10.1371/journal.pone.0045535.t011
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Table 12. Ratio-sum-difference-product metafeatures clustered with JSDsevere.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

TREX1.34689_at+NM_005758.206809_s_at 0.933423

ESR1.205225_at-AL050026.216626_at 0.910083

VSNL1.203798_s_at-AKAP12.210517_s_at 0.877939

PURA.213806_at-APOH.205216_s_at 0.872983

PTEN.222176_at-AL050026.216626_at 0.870794

MAPK1.208351_s_at+MLLT4.208512_s_at 0.867901 Adherens junction

TREX1.34689_at*COX6A1.200925_at 0.864481

CNOT1.200861_at-GABRQ.220886_at 0.856692

UBE3B.213822_s_at+ADK.204119_s_at 0.847332

MTSS1.210360_s_at-PTEN.211711_s_at 0.843329

S80491.216974_at-PTEN.211711_s_at 0.842751

MLLT4.208512_s_at/PTEN.211711_s_at 0.842239 Tight junction

PPP2CA.208652_at/PTEN.211711_s_at 0.842212 Tight junction

P2RY10.214615_at-AL050026.216626_at 0.842191

TTK.204822_at-PTEN.211711_s_at 0.840396 Inositol phosphate metabolism

FLJ39739.217136_at-PTEN.211711_s_at 0.837966

UBE3B.213822_s_at+ATRN.212517_at 0.836922

TREX1.34689_at+RPS24P2.217188_s_at 0.83673

UBE3B.213822_s_at-FOLH1.217483_at 0.835834

SCGB2A1.205979_at-APOH.205216_s_at 0.83274

AJ302559.216818_s_at-KLK3.204582_s_at 0.830253

TREX1.34689_at-PRKD2.38269_at 0.82812

AJ302559.216818_s_at-PTEN.211711_s_at 0.827864

TPD52.201691_s_at-FOLH1.217483_at 0.827066

TREX1.34689_at+DDX18.208897_s_at 0.8255

SI.206664_at+PTEN.211711_s_at 20.80904

TNRC4.215045_at*AL536319.212606_at 20.80962

FCAR.211307_s_at+PTEN.211711_s_at 20.81072

AL050026.216626_at+OTUB2.219369_s_at 20.81137

CMKLR1.210659_at+PTEN.211711_s_at 20.81349

KLK3.204582_s_at+PTEN.211711_s_at 20.81565

PAX3.216059_at+NM_018601.220880_at 20.82244

AL050026.216626_at+CTAGE5.204055_s_at 20.82288

FZD5.206136_at+PTEN.211711_s_at 20.82362

CAMP.210244_at-SCGB1D2.206799_at 20.82501

PTEN.211711_s_at*PIP5K1C.212518_at 20.82503 Phosphatidylinositol signaling system

PLA2G2F.215870_s_at-RARRES2.209496_at 20.82717

BPI.205557_at+PTEN.211711_s_at 20.8328

AI478300.217526_at-TREX1.34689_at 20.83316

AL050026.216626_at+PTEN.211711_s_at 20.83401

PTEN.211711_s_at-PTPRN2.203030_s_at 20.83583

FOLH1.217483_at-SCGB1D2.206799_at 20.83998

RAB14.200928_s_at+PTEN.211711_s_at 20.84169

GALNT10.212256_at*SHANK2.213307_at 20.84811

NM_004908.208254_at+PTEN.211711_s_at 20.84856

SPRED2.212458_at*DDN.214788_x_at 20.85116

FADS1.217462_at+PTEN.211711_s_at 20.86774

CYP3A4.205998_x_a/CPT2.204264_at 20.87018 Fatty acid metabolism
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1,372-probe set data. It contains a total of 3,763,403 probe

sets, metafeatures and progression markers. We refer to this

data set as the 3,763,403 ratio-sum-difference-product metafeatures

data set.

In each of these two data sets, we have included the original

1,372-probes gene expression signature and five measures of AD

progression: MMSE score, NFT count and Braak staging from

Blalock et al. [3] and the Jensen-Shannon divergences, JSDcontrol and

JSDsevere, from Ravetti et al. [5]. We assume here that correlation

between the values associated with these measures and microarray

probe set expression values can highlight important biomarkers of

AD progression.

Data Clustering
We have adapted, enhanced and re-implemented the MSTkNN

graph partitioning algorithm in [10] to cluster the features in the

large data sets. The proposed method utilizes a graph partitioning

approach that optimizes both the local minimum (by using the

kNN graph) and global minimum (by using the MST). Therefore,

the clusters presented are not necessarily a sorted a list of probes

by their correlation to the phenotypes.

The algorithm first constructs an undirected and complete

graph from the data set where each node is a biological feature

and each edge represents a correlation between two features.

Then, the algorithm starts the clustering process by computing two

proximity graphs: a minimum spanning tree (GMST) and a k-

nearest neighbour graph (GkNN); where the value for k is adaptively

selected from the following equation:

k~minftln (n)s,mink=GkNN isconnectedg ð1Þ

Subsequently, the algorithm inspects all edges in GMST. If for a

given edge (x,y) neither x is one of the k nearest neighbors of y, nor y

is one of the k nearest neighbors of x, the edge is eliminated from

GMST. This results in a new graph G’= GMST – {(x,y)}. Since GMST

is a tree, after the first edge is deleted G’ is now a forest, as it is a

graph that composed of two subtrees. The algorithm continues

applying the same procedure to each subtree in G’ thus generated

(with a value of k re-adjusted by eq. (1) above where n is now the

number of nodes in each subtree), until no further partition is

possible. The final partition of the nodes of G’ induced by the

forest is the result of the clustering algorithm.

Figure 6. Demonstration of the modified MSTkNN
algorithm. (a) An MSTp created from a data set with
n = 10 features/probe sets. Each edge is labeled with an

integer value p, where the value of p is determined using a sorted

list of nearest neighbors for each feature (see eq. (2)). The edge

between F9 and F10 is a candidate for elimination, since it has a

value of p. tln (10)s= 2 (b) Two connected components are

identified and we apply the same procedure with the component

that has more than three elements. (c) The final outcome of the

clustering.

The original algorithm requires(n|(n{1)=2) distance values

(between all pairs of the n elements) as the input. For a large data

set, this may be too large to fit in the computer’s in-memory and,

for even larger values of n, it may not even fit in external memory.

Even if we can store the distance matrix in the external memory,

the computational speed will slow down dramatically because of

the increased number of I/O operations. Therefore, we modified

this step and instead of creating the complete graph from the

distance matrix, we create a q-nearest neighbor graph (GqNN),

where q = tln (n)s+1. This procedure reduces the input graph size,

but still creates a reasonable clustering structure of the data set.

The value of the q is determined from the inclusion relationship [117]

of the GMST and the family of the nested sequence of graphs (GkNN,

where k . ln(n)).

Next, we compute the MST of the GqNN graph. We term it as,

GMSTp. We annotate each edge in GMSTp according to the following

procedure: for each edge (a,b) in E(GMSTp) we assign an integer

value p such that if f(a,b) is the index of b in the sorted list of nearest

neighbors of a in GqNN, the value of p is given by,

p~min f a,bð Þ,f b,að Þf g ð2Þ

We define the maximum value of p in the MSTp (or any of its

components) as pmax and then, we partition the GMSTp with the

following criteria:

C1. If p. tln (n)s; remove the edge,

C2. If pmax , tln (n)s; remove the edges with weight pmax –1,

and;

C3. If pmax = 1 or pmax = tln (n)s; do not remove any edge and the

result is a ‘‘cluster’’.

The final output of our algorithm is a set of partitions or

clusters of the input data (See Figure 6). The algorithm does not

require any pre-determined value for q but it is possible to

change the threshold from tln (n)s to any other user-defined

parameter. The complete algorithm can be found in [13]. To

accelerate the data preprocessing we employed General Purpose

Graphics Processing Unit (GPGPU) computing and implement-

ed a fast and scalable approach to compute the distance metrics

and the q-nearest neighbor graph (GqNN). An illustrated example

of our GPU-based nearest neighbor search algorithm is given in

File S4.

To create the MST from large data set we adapted the EM

MST algorithm in [11] and modified it to annotate the edges

according eq. (4). The I/O complexity of this algorithm is

O(sort(m)Nlog(n/M)), where n is the number of nodes of the original

Table 12. Cont.

Metafeature (Gene Symbol. Probe Set ID) Correlation Coefficient Common KEGG Pathways

N25732.204131_s_at/AF043586.216394_x_at 20.9031

C3orf63.209285_s_at*DDN.214788_x_at 20.90361

We have selected 50 metafeatures (25 most positively correlated and 25 most negatively correlated) and ordered them by Spearman’s rank correlation with JSDsevere.
Genes in boldface indicate that they were previously discussed in [5] and genes with underlined boldface represent the cases for which the gene has been discussed in
the context of AD in the published literature (see File S3 for details).
doi:10.1371/journal.pone.0045535.t012
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Figure 2. Comparison of single probe set correlations and metafeature correlations. Figure shows plots of the correlation with MMSE
score of three probe sets targeting TTN, CASK and TUG1 and three metafeatures involving these probe sets (TTN/PKRCB1, CASK/PTEN and TUG1/
SCFD1). In this example, the correlations between MMSE score and the metafeatures are much better than the correlation between MMSE score and
the individual probe sets.
doi:10.1371/journal.pone.0045535.g002
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graph, m is number of edges and M number of nodes that fit into

computer’s internal memory, respectively, and the sort(m) is the

time required for sorting the m edges. After partitioning the MST,

we identify the connected components using the EM connected

component algorithm in [11,12,118]. The I/O complexity of this

algorithm is O(mNlog(log(n)). Unlike other clustering tools, we store

the connected components/clusters in external memory and only

keep the list of the components in computer’s in-memory. This

eliminates the excessive use of the in-memory even when there are

a large number of components or clusters. Additionally, we tuned

the implementations of the adapted algorithms [11,12,118] for

better performance with denser graphs. Since our algorithm has

been implemented in external memory approach, we term our

algorithm as EM MSTkNN algorithm. Please note here that our

proposed method can be implemented either in-memory or

external memory paradigm. To make this method further scalable,

we have taken the advantages of external memory algorithms and

environments.

The computational tests were performed on a Xenon Nitro

T5 Supermicro server (16 CPU cores, 32 GB RAM, 4x

NVIDIA Tesla C2050 ‘‘Fermi’’ GPU cards (1792 GPU Cores

and 12 Gb RAM total) and 800GB Hard-disk) and the

programs were written in C/C++ with the support of CUDA

[119], STL, STXXL [120] and BOOST [121] library and

compiled using the g++ and nvcc compiler on a Linux

operating system with kernel version 2.6.9.

Figure 3. Venn diagram of the different transcripts clustered with progression markers in the 941,885 metafeatures data set. This
figure highlights the ‘robust correlating’ transcripts that are shared by different progression marker clusters. A null (Q) symbol here means that even if
an overlap is shown in the figure, there is no common transcript. We refer the readers to Supporting Information Table S4., for further details of
correlation of these markers to the phenotypes.
doi:10.1371/journal.pone.0045535.g003
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Monte-Carlo Random Permutation Test
Assessing correlations involving a large number of metafea-

tures and a small number of samples has the potential to lead

to spurious, false positive results. To estimate the false discovery

rate when assessing correlations involving metafeatures, we

performed a simple a Monte-Carlo permutation test, a useful

resampling test when there are many possible orderings of the

samples. In this test, we randomly permuted (rearranged) the values

of the progression marker in question and computed the correlation

of each metafeature against it. A total of 1,000 iterations of the test

were performed and the average number of metafeatures passing

various correlation coefficient thresholds determined.

Functional Annotation
After performing the clustering on the expanded data sets, we

identified the specific clusters that contained the progression markers

Figure 4. Venn diagram of the different transcripts clustered with progression markers in the 3,763,403 metafeatures data set. This
figure highlights the ‘robust correlating’ transcripts that are shared by different progression marker clusters. A null (Q) symbol here means that even if
an overlap is shown in the figure, there is no common transcript. We refer the readers to Supporting Information Table S5., for further details of
correlation of these markers to the phenotypes.
doi:10.1371/journal.pone.0045535.g004
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(MMSE score, NFT count, Braak staging, JSDcontrol and JSDsevere) and

analysed the correlation (using Spearman’s rank computation) of the

clustering probe sets or metafeatures with these progression markers.

If the size of the cluster was very big, we noted the top most positively

and negatively correlated probe sets or metafeatures.

GATHER [122], a popular online tool for interpreting genomic

signatures, was used to assess possible biological relationships

between the two transcripts targeted by the probe sets comprising

a metafeature. We checked each of the clustering metafeatures to

determine if the relevant transcripts share any common biological

pathway (KEGG pathways). Our objective here is to detect the

pair of transcripts that not only appear in the same pathway but

also jointly activate the progression of AD.

Validation Using an Alternative Dataset
For validation of changes in select genes, we analyzed the dataset

contributed by Liang and colleagues [95,96], which can be accessed

from NCBI Gene Expression Omnibus under the accession number

GSE5281. This microarray dataset was generated using Affymetrix

Human Genome U133 Plus 2.0 Arrays and assessed gene

expression in healthy neurons isolated by laser capture microdis-

Figure 5. Validation of robust markers of AD progression in an alternative dataset. Transcript levels for selected genes of interest were
investigated in the microarray dataset of Liang and colleagues [95,96], which assessed gene expression in healthy neurons isolated from four different
regions of control and AD brain: entorhinal cortex (EC), hippocampus (HIP), middle temporal gyrus (MTG) and posterior cingulate cortex (PC). Data
presented in this figure were normalized using Robust Multichip Average (RMA). In the box and whisker plots, the bottom and top of the box
represent the lower and upper quartiles, respectively, and the band within the boxes represents the median, while the ends of the whiskers represent
the minimum and maximum values.
doi:10.1371/journal.pone.0045535.g005
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section from different regions of post-mortem control and AD brain.

We refer the reader to [95,96] for full experimental details.

In the analyses presented here, we investigated gene expression in

the entorhinal cortex (13 controls, 10 AD), hippocampus (13 controls,

10 AD), middle temporal gyrus (12 controls, 16 AD) and posterior

cingulate cortex (13 controls, 9 AD). Microarray data were

normalised with RMA in the Affymetrix Expression Console (v1.1).

For each region, genetic signatures that discriminate control and AD

samples were generated as described in [5]. Briefly, data were first

preprocessed by discretization of the expression values using an

implementation of Fayyad and Irani’s algorithm [6], an entropy-

based heuristic. This was followed by a filtering step to discard probe

sets that do not provide sufficient information to discriminate between

the control and AD classes, based on the Minimum Description

Length principle (reviewed in [123]). The matrix of discrete values

returned after entropy filtering was then used to create an instance of

the (a,b)-k-Feature Set problem (for details see [123]). The optimal

solution to this problem was used as the genetic signature.
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